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Abstract 24 

 25 

What is the uncertainty of climate-carbon cycle projections in response to anthropogenic 26 

greenhouse gas emissions and how can we reduce this uncertainty? We address this question by 27 

quantifying the ability of available ocean tracer observations to constrain the values of diapycnal 28 

diffusivity in the pelagic ocean (Kv), a key uncertain parameter representing sub-gridscale 29 

diapycnal (vertical) mixing in physical circulation models. We show that model versions with 30 

weak mixing (i.e., low Kv) lead to higher projections of atmospheric CO2 and larger global 31 

warming than models with vigorous mixing. Slower heat uptake as well as slower carbon uptake 32 

by the oceans contribute about equally to the accelerated warming in the low mixing models. A 33 

Bayesian data-model fusion method is developed to quantify the likelihood of different structural 34 

and parametric model choices given an array of observed 20th century ocean tracer distributions. 35 

These spatially resolved observations provide strong limits on the upper value of Kv, whereas 36 

global metrics used in previous studies—such as the historical evolution of global average 37 

surface air temperature, global ocean heat uptake, or atmospheric CO2 concentration—provide 38 

only poor constraints. We compare different methods to quantify the probability of a particular 39 

diffusivity value given the observational constraints. One-dimensional, globally horizontally 40 

averaged data result in sharper probability density functions compared with the full 3D fields. 41 

This perhaps unexpected result opens up an avenue to objectively determine the optimal degree 42 

of aggregation at which model predictions have skill, and at which observations are most helpful 43 

in constraining model parameters. Our best estimate for Kv in the pelagic pycnocline is around 44 

0.05-0.2 cm2/s, in agreement with earlier independent estimates based on tracer dispersion 45 

experiments and turbulence microstructure measurements. 46 

 47 

48 
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1. Introduction 48 

Atmospheric CO2 concentrations are rising faster than ever since continuous monitoring began in 49 

1959 [Canadell et al., 2007]. Increasing anthropogenic carbon emissions is the main cause of 50 

this accelerating growth, but reduced uptake of atmospheric CO2 by ocean [Le Quere et al., 51 

2007] and land are also hypothesized to play a role [Canadell et al., 2007]. These observations 52 

are consistent with previous coupled climate-carbon cycle model simulations that predict 53 

decreases in terrestrial and oceanic carbon uptake in the future due to changes in climate [Cox et 54 

al., 2000; Dufresne et al., 2002; Friedlingstein et al., 2006; Govindasamy et al., 2005; Jones et 55 

al., 2003; Joos et al., 1999; Joos et al., 2001; Matear and Hirst, 1999; Matthews et al., 2005b; 56 

Sarmiento et al., 1998; Zeng et al., 2004]. However, the Coupled Climate - Carbon Cycle Model 57 

Intercomparison Project (C4MIP) [Friedlingstein et al., 2006] shows a large range in the 58 

projected magnitude of this feedback between different models. Projected atmospheric CO2 59 

levels for emission scenario SRES A2 at year 2100 range from ~700 ppmv to ~1000 ppmv, and 60 

up to 200 ppmv of this difference can be attributed to differences in the climate-carbon cycle 61 

feedback [Friedlingstein et al., 2006]. Thus, the unknown magnitude and uncertainty of the 62 

future climate-carbon cycle feedback presents a major hindrance in the assessment of the impacts 63 

of carbon emission scenarios. 64 

 65 

The reasons for the aforementioned model differences are poorly understood. Although the 66 

C4MIP models showed larger differences in land uptake (-6 to +10 GtC/yr), there were also 67 

considerable differences in ocean uptake (+4 to +10 GtC/yr) by the year 2100 [Friedlingstein et 68 

al., 2006]. Matthews et al. [2005a] shows that differences in the parameterizations of the 69 

dependency of terrestrial vegetation growth rates on ambient temperatures have a large effect on 70 

carbon uptake on land in future warming experiments, suggesting that this might be a major 71 

contributor to the uncertainty range observed in the C4MIP models. Even less is known about 72 

reasons for the differences in ocean uptake, although more simplified models (either in terms of 73 

physics or biology) apparently show a larger sensitivity of carbon uptake with respect to 74 

temperature changes than more complex models [Friedlingstein et al., 2006]. A more detailed 75 

comparison between two specific models attributes a two fold difference in oceanic carbon 76 

uptake (4 GtC/yr in the UK Hadley Center model versus 8 GtC/yr in the French IPSL model at 77 
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700 ppmv atmospheric CO2) due to increasing CO2 alone (without climate change) to differences 78 

in Southern Ocean circulation [Friedlingstein et al., 2003].  79 

 80 

The models included in the C4MIP exercise are very heterogeneous and range from box models 81 

to zonally averaged and slab mixed layer ocean models to fully three-dimensional coupled 82 

atmosphere-ocean general circulation models (AOGCMs). These studies are mostly silent on the 83 

question of how probable the different model structures are given the available observational 84 

constraints. Without a systematic and probabilistic comparison between observations and the 85 

C4MIP models, it remains unclear how to interpret the range covered by the C4MIP models. A 86 

careful probabilistic analysis of whether the models are consistent with observations can provide 87 

important insights into this question [Doney et al., 2004; Matsumoto et al., 2004]. 88 

 89 

It is also likely that the C4MIP model simulations do not cover the full scope of uncertainty in 90 

possible future climate-carbon interactions, due to (for example) an incomplete representation of 91 

the range of unconstrained parameters. Recent Monte Carlo simulations with an atmosphere 92 

model suggest that model parameter uncertainties can increase the range of future climate 93 

projections considerably [Murphy et al., 2004; Stainforth et al., 2005]. A key uncertain 94 

parameter in ocean circulation models is the diapycnal (vertical) diffusivity Kv. The strong 95 

sensitivity of the global deep overturning circulation to Kv has been known since the pioneering 96 

study by Bryan [1987]. Here we investigate the uncertainty in ocean vertical mixing and its 97 

effect on future projections of climate and CO2.  98 

 99 

Earlier studies show that tracer distributions in ocean models are sensitive to changes in ocean 100 

circulation and ventilation [Doney et al., 2004; England and Maier-Reimer, 2001; Gnanadesikan 101 

et al., 2004; Matsumoto et al., 2004], but no attempt has been undertaken to quantify the 102 

probability of different model structures and parameters given spatially resolved observations of 103 

ocean tracer distributions. Probabilistic approaches to climate projections have only been 104 

developed in recent years. These pioneering studies were designed to estimate the probability 105 

density function (PDF) of the climate sensitivity and used simple model structures constrained 106 

only by globally aggregated observations such as the global mean surface air temperature 107 

evolution since 1850 [Andronova and Schlesinger, 2001], global mean ocean heat content 108 



 

 5 

changes [Forest et al., 2002; Knutti et al., 2003; Tomassini et al., 2007], atmospheric CO2 109 

[Ricciuto et al., 2008], global carbon emissions [Jones et al., 2006], or paleoclimate data [Annan 110 

et al., 2005; Schneider von Deimling et al., 2006]. Tomassini et al. [2007] found a multimodal 111 

probability distribution for Kv, and concluded that these globally averaged metrics do not provide 112 

strong limits on the value of Kv.  Here we show that multiple physical, geochemical and 113 

biogeochemical observations with spatial resolution can provide much stronger constraints on 114 

the diapycnal ocean diffusivity. The main goal of this paper, however, is to develop and 115 

demonstrate a Bayesian data-model fusion approach for spatially distributed tracer observations 116 

that can be used to assess and reduce the uncertainty of future climate projections. 117 

 118 

2. Methods 119 

2.1. Model 120 

The UVic Earth System Climate Model [Weaver et al., 2001] of intermediate complexity, 121 

includes a coarse resolution (1.8x3.6º, 19 vertical layers) three-dimensional general circulation 122 

model of the ocean. It has state-of-the-art physical parameterizations such as diffusive mixing 123 

along and across isopycnals, eddy induced tracer advection [Gent and McWilliams, 1990] and a 124 

scheme for the computation of tidally induced diapycnal mixing over rough topography 125 

[Simmons et al., 2004]. In order to account for other sources of mixing, a globally constant 126 

background diffusivity Kbg is added to the tidally induced diffusivity Kv = Ktidal + Kbg. It is 127 

unlikely that breaking of internal waves and other unconsidered sources of mixing are spatially 128 

constant, but lacking process based parameterizations, Kbg is assumed constant within the current 129 

model context. It is this background diffusivity Kbg that we vary in our sensitivity study, from 130 

0.01 cm2/s to 0.5 cm2/s. The tidally induced diffusivity rapidly decays in the water column above 131 

the sea floor with an exponential depth scale of 500 m. This results in the background diffusivity 132 

determining the value of diapycnal mixing in most parts of the pelagic pycnocline. Observations 133 

from the Southern Ocean show that diapycnal mixing is much larger than in other oceans 134 

[Naveira Garabato et al., 2004]. We account for these observations by limiting Kv to ≥ 1 cm2/s 135 

south of 40°S. Thus, the variations in Kbg affect mixing only in the open ocean north of 40°S.  136 

 137 
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A simple one-layer atmospheric energy-moisture balance model (EMBM) interactively 138 

calculates heat and water fluxes to ocean, land and sea ice, while wind velocities are prescribed 139 

from the NCAR/NCEP monthly climatology in the momentum transfer to the ocean and to a 140 

dynamic-thermodynamic sea ice model. The model does not use flux corrections. The model of 141 

the terrestrial vegetation and carbon cycle [Meissner et al., 2003] is based on the Hadley Center 142 

model TRIFFID. The ocean biogeochemical model is based on the NPZD (nutrient, 143 

phytoplankton, zooplankton, detritus) ecosystem model of Schmittner et al. [2005b], and 144 

includes a parameterization of fast nutrient recycling due to microbial activity after Schartau and 145 

Oschlies [2003]. It solves prognostic equations for two phytoplankton classes (nitrogen fixers 146 

and other phytoplankton) as well as for nitrate, phosphate, oxygen, dissolved inorganic carbon, 147 

alkalinity, radiocarbon and chlorofluorocarbons as tracers. The biogeochemical/carbon cycle 148 

model is described in detail in Schmittner et al. [2008]. Biological uptake and release occurs in 149 

fixed elemental ratios of carbon, phosphate, nitrate and oxygen. Calcium carbonate production is 150 

parameterized as a fixed ratio of the production of particulate organic matter in the water 151 

column. Remineralization of calcium carbonate is determined by instantaneous sinking with an 152 

e-folding depth of 3500 m.  153 

 154 

The ensemble consists of 8 models with Kbg=(0.01,0.05,0.1,0.15,0.2,0.3,0.4,0.5). (In the 155 

following, for brevity, we omit the units of Kbg, which are in cm2/s.) Each model version is 156 

restarted from an 8000 year control integration with Kbg=0.15, and spun up for an additional 157 

3000-4000 years (longer for smaller Kbg) using constant pre-industrial forcing until climate and 158 

carbon cycle are in quasi-equilibrium. Initially atmospheric CO2 is fixed at 280 ppmv, but for the 159 

last ~1000 years of the spin up it is calculated interactively. Equilibrium is determined if changes 160 

in atmospheric CO2 are less than 5 ppmv per 1000 years, so that at the end of the spin up 161 

atmospheric CO2 is within ±5 ppmv of ice core measurements of its pre-industrial value of 280 162 

ppmv (Figure 1) for all model versions. Subsequent estimates [Crowley, 2000] of historical 163 

forcing from year 1800 to 1998 AD are applied, considering changes in solar insolation, volcanic 164 

and anthropogenic aerosol and greenhouse gases, followed by CO2 emission scenario SRES A2 165 

until 2100 and a linear decrease of emissions to zero from year 2100 to 2300 (Figure 1). Solar, 166 

aerosol and non-CO2 greenhouse gas forcings have been held constant at 1988-1998 levels for 167 

the future simulations. 168 
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 169 

2.2. Observations 170 

We calculate probability densities for nine three-dimensional tracer distributions from two 171 

databases. Temperature (T) [Locarnini et al., 2006], salinity (S) [Antonov et al., 2006], phosphate 172 

(PO4) [Garcia et al., 2006a], apparent oxygen utilization (AOU) [Garcia et al., 2006b] and 173 

preformed phosphate (P*=PO4-AOU/170) are taken from the World Ocean Atlas 2005 (WOA05, 174 

data downloaded from ftp.nodc.noaa.gov/pub/data.nodc/woa/WOA05nc) and radiocarbon 175 

(Δ14C), chlorofluorocarbon 11 (CFC11), dissolved inorganic carbon (DIC), and alkalinity (ALK) 176 

are adopted from the Global Ocean Data Analysis Project (GLODAP) [Key et al., 2004]. Both 177 

databases provide data on a 1

€ 

×1° grid with 33 vertical levels. The observations are averaged 178 

onto the 1.8

€ 

×3.6° model grid with 19 vertical levels. GLODAP data represent the 1990s and are 179 

compared with the decadal model mean from 1990-2000, whereas WOA05 data represent the 180 

1950-2000 and are compared to the model mean during this period.  181 

 182 

2.3. Observation Error Estimates 183 

To quantitatively compare observations to model projections requires an estimate of the 184 

observation errors. The error size determines how far from the data a model can be and still 185 

remain consistent with the observations. Spatially variable error estimates for the observations 186 

(σOi) are available for Δ14C, CFC, DIC and ALK from the GLODAP data set representing errors 187 

resulting from the objective analysis (mapping) procedure used to interpolate and extrapolate 188 

observations to a global grid. Due to the sparse observations the GLODAP error estimates are 189 

horizontally correlated with a correlation length scale of 10-20°. Thus the GLODAP errors are 190 

simply averaged onto the model grid.  191 

 192 

The WOA05 provides the standard error for each unanalyzed variable, which is the standard 193 

deviation of the mean divided by the square root of the number of observations in each grid cell. 194 

Following the recommendation in the WOA05 documentation (available at 195 

http://www.nodc.noaa.gov/OC5/WOA05/pr_woa05.html) the error due to the objective analysis 196 

is estimated as the difference between the value of the analyzed field and the mean at each grid 197 

cell containing observations. For T and S, which have observations at almost all grid points, this 198 
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error is horizontally uncorrelated. The global horizontal root mean square is calculated at each 199 

depth level, representing the (horizontally uniform but vertically varying) mapping error. This 200 

mapping error is added to the standard error to yield the spatially variable total error estimate.  201 

 202 

For PO4, pre-formed PO4, and AOU the data density is too sparse to calculate an error estimate 203 

due to the mapping procedure, because the calculation outlined above can only be performed for 204 

points that include data. For this reason we do not use the analyzed fields but rather we use the 205 

unanalyzed mean (the average of the raw observations in any given 1x1° data grid box). This 206 

limits the number of grid cells to those containing observations. The observations are averaged 207 

onto the model grid, and model grid cells without observations are discarded in the analysis. In 208 

this case the total error of the observations is only the standard error of the mean (no mapping 209 

error). For all WOA05 variables the total errors are assumed to be horizontally uncorrelated and 210 

are hence averaged onto the model grid and divided by 

€ 

2.55 = 3.6 ×1.8  in order to account for 211 

6.48 independent data grid boxes in one model grid cell. 212 

 213 

2.4. Statistical Analysis 214 

We assess the compatibility of different diapycnal diffusivities with observed tracer 215 

measurements using Bayesian inference to compute the relative probability of each of the eight 216 

diffusivities in our ensemble implied by each of the nine tracer fields. Two different methods are 217 

used in the model assessment. The first computes the root mean squared (RMS) error (E) for 218 

each model, including the full three-dimensional (3D) spatial fields of observations. This method 219 

neglects the correlation of the errors and requires the size of the errors to be specified. The 220 

second method considers the correlation of the errors and determines the error magnitude and 221 

bias endogeneously from the data-model residuals. However, due to computational constraints it 222 

uses only 1-dimensional data (globally horizontally averaged depth profiles). Both methods, as 223 

well as the relations between them, are described in detail below. 224 

 225 

2.4.1. The 3D Method 226 

Models that greatly differ from the observations are judged less probable than models whose 227 

deviations from the data are small.  To quantify this intuition, it is necessary to mathematically 228 
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specify what “small” means.  We introduce an error estimate σ to set the scale against which 229 

data-model discrepancies are evaluated.  These deviations are deemed large or small relative to 230 

the magnitude of σ.  Observations can differ from model predictions for two reasons:  model 231 

structural error, and observational/measurement error.  The quality of data-model agreement 232 

depends on how large we judge these errors to be (see Sec. 3.7).  However, errors can be difficult 233 

to estimate a priori (before seeing the observational data), especially when model structural 234 

errors are substantial. Observational errors usually can be estimated from known properties of 235 

the measurement system (Sec. 2.3), but the size of the model error typically cannot be 236 

determined without comparing the model output to observations. 237 

 238 

To assess model skill for each tracer i, we calculate the error-weighted mean squared error  239 

 240 

€ 

Ei
2 =

Oi −Mi

σ i

 

 
 

 

 
 

2

.      (1) 241 

 242 

The overbar denotes the global, volume-weighted average. Deviations of each modeled 3D tracer 243 

field 

€ 

Mi = Mi(x,y,z) = Mi + ′ M i  from the observations 

€ 

Oi = Oi(x,y,z) = Oi + ′ O i  are weighted by a 244 

combined error estimate (σi
2 = σOi

2 + σMi
2) for the observations σOi and the model σMi. (The 245 

prime denotes the deviation from the global mean.)  Our methods for estimating the observation 246 

and model errors are discussed in Section 3.4.1. 247 

 248 

The models often show bias relative to the observations, so that their mean prediction differs 249 

from the mean of the observations.  To distinguish between the amount of error introduced by 250 

model bias and the amount of error unrelated to bias, we also consider the bias-corrected RMS 251 

error. This error is calculated by subtracting the global mean bias 

€ 

bi =Oi −Mi , so that the bias 252 

corrected residuals 

€ 

Oi −Mi − bi  have zero mean.  The bias-corrected RMS error is then 253 

€ 

′ E i
2 =

Oi − Mi − bi

σ i

 

 
 

 

 
 

2

=
′ O i − ′ M i
σ i

 

 
 

 

 
 

2

. The error 

€ 

′ E i
2 excludes information about the global mean 254 

data-model misfit.  255 
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The probabilistic model assessment, however, includes information on the global mean data-256 

model misfit using equation (1). Assuming the errors are independent and identically-distributed 257 

random variables, the probability density  258 

 259 

€ 

L(Oi |Kbg )∝exp(−
1
2
Ei

2)        (2) 260 

 261 

is the likelihood that the observations Oi could arise from the model with parameter Kbg. Above, 262 

€ 

Ei
2 = Ei

2 × N  is the (volume-weighted, error-weighted) sum of squared errors, equal to the mean 263 

squared error 

€ 

Ei
2  times the number of data points (N). More precisely, assuming a known error 264 

σ, the probability in equation (2) is a normal likelihood function: the observations are assumed to 265 

be drawn from a normal distribution with mean centered on the model output 266 

€ 

(O ~ N(µ = M,σ 2)). Bayes’ theorem states that the posterior probability density function (PDF) 267 

for Kbg is proportional to the product of the likelihood of the observations with the prior PDF of 268 

Kbg, p(Kbg): 269 

 270 

€ 

p(Kbg Oi)∝L(Oi Kbg ) × p(Kbg )  .      (3) 271 

 272 

The prior PDF quantifies expert judgment about the value of Kbg before having assimilated the 273 

observational data. We adopt a uniform prior PDF for Kbg, giving equal prior probability to 274 

each model run. The posterior probability of a particular model run is the product of how likely 275 

the data are given the model output, weighted by how probable the run is judged to be a priori. 276 

See Gelman et al. {, 2004 #424} for a basic reference text on Bayesian methods.  277 

 278 

If the errors in different tracers are independent of each other – which is generally not the case, 279 

as discussed below – likelihoods for individual tracers can be multiplied to yield the combined 280 

likelihood of all tracers, 

€ 

L(O |Kbg ) = L(Oi |Kbg )
i
∏ . Probability-weighted projections for a 281 

climate variable T are obtained by averaging over the possible values of Kbg, 282 

€ 

T = T(Kbg ) ⋅ p(Kbg |O)dKbg
Kbgmin

Kbgmax

∫ ,     (4) 283 
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 284 

if the PDF is defined on the interval [

€ 

Kbgmin , 

€ 

Kbgmax]. 285 

 286 

2.4.2. The 1D Method 287 

 288 

The above 3D method ignores spatial autocorrelation of the data-model residuals, 

€ 

Ri =Oi −Mi, 289 

which is known to lead to overconfident parameter estimates [Zellner and Tiao, 1964]. In 290 

addition, the above formulation presumes that the residual error σ is known, but as discussed in 291 

the previous section, it can be difficult to estimate a priori. Here we develop a relatively simple 292 

and computationally efficient method to estimate the combined effects of observation errors and 293 

model structural errors endogenously from the overall data-model misfit. This method is more 294 

computationally expensive than the 3D method, so we apply it to small 1D aggregated data sets 295 

instead of to the full 3D spatial fields.  296 

 297 

When the errors are uncorrelated, only their magnitudes σi need to be specified.  If the errors are 298 

correlated, the correlation between errors must be specified in addition to their magnitudes. We 299 

generalize from the error variances σi
2 to an error covariance matrix Σ, which includes the error 300 

variances and the spatial correlations between points. In the 3D method we use the weighted sum 301 

of squared errors, 

€ 

(Oi −Mi)
2 /σ i

2

i
∑ , to quantify model skill. This error measure is not 302 

appropriate when the errors are correlated. Correlated errors effectively provide fewer 303 

independent data points than uncorrelated errors. An appropriate measure should penalize 304 

models less harshly when correlation is present, since fewer independent data are assimilated.  305 

To include correlation the sum of squared errors generalizes to a quantity involving the error 306 

covariance matrix, known as the Mahalanobis distance [Mahalanobis, 1936], which appears in 307 

the multivariate normal distribution: 308 

 309 

€ 

Ei
2 = (Oi −Mi)

T Σi
−1(Oi −Mi) .     (5) 310 

 311 
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This expression reduces to the sum of squared errors when the covariance matrix is diagonal 312 

with entries 

€ 

σ i
2, i.e., when it contains only variances but no off-diagonal correlations.  (In the 313 

remainder of this section we omit the subscript i when referring to each tracer.) 314 

 315 

Only small covariance matrices are used here because matrix inversion is computationally 316 

expensive, growing with the cube of the number of data points. To reduce the size of the 317 

covariance matrix to a computationally feasible magnitude, we consider only a 1D globally 318 

averaged spatial field of tracer data O(z) and M (z) as a function of depth z. Each field is reduced 319 

to 18 data points (depths), allowing the assimilation to run for all tracers within a few minutes on 320 

a single workstation. A small 2D latitude-depth grid may also be computationally feasible to 321 

assimilate in this manner, but this exercise is beyond the scope of this proof-of-concept study. 322 

We assume the covariance matrix Σ is given by a stationary squared-exponential covariance 323 

function between depths zj and zk, 

€ 

Σ jk =σ 2 exp(− z j − zk
2
/λ2) , where σ2 is the residual variance 324 

and λ is a range or correlation length parameter. A squared-exponential covariance function 325 

implies a smooth (infinitely differentiable) spatial process, and is chosen because prior judgment 326 

as well as inspection of the residuals suggest that the globally-averaged model structural error 327 

varies smoothly with depth. Including the possibility of a constant model bias, b, the 328 

observations are assumed to be drawn from a multivariate normal likelihood centered on the 329 

bias-corrected model output 

€ 

(O ~ MVN(µ = M + b,Σ)).  330 

 331 

In the previously discussed 3D method, the residual error σ, the correlation length λ, and the 332 

model bias b are assumed known constants (with λ=0, and b=0 or set to the difference in 333 

observational and model means).  These constants may differ between tracers. In the 1D method 334 

applied here, we relax these assumptions by treating the three constants as unknown statistical 335 

parameters. The full Bayesian approach, which we approximate, is to calculate a joint posterior 336 

PDF for all the uncertain parameters, including the model parameter Kbg and the three statistical 337 

parameters. By Bayes’ theorem, this posterior probability is proportional to the product of the 338 

likelihood of the observations with the prior probability of the parameters, 339 

 340 

€ 

p(Kbg,σ,λ,bO)∝L(OKbg,σ,λ,b) × p(Kbg,σ,λ,b).    (6) 341 



 

 13 

 342 

We are most interested in the probabilities of the different model diffusivities, not of the 343 

statistical parameters. We can obtain the posterior PDF 

€ 

p(Kbg O)  for Kbg alone by integrating the 344 

joint posterior 

€ 

p(Kbg,σ,λ,bO), Eq. 6, with respect to the three statistical parameters: 345 

 346 

€ 

p(Kbg |O) = p(Kbg,σ,λ,bO)∫∫∫ dσdλdb .                 347 

(7) 348 

 349 

However, for computational simplicity, we avoid performing this integral by fixing the statistical 350 

parameters at their best-fit values σ*, λ*, β*. This gives an approximate proportionality  351 

 352 

€ 

p(Kbg |O) ≈ p(Kbg |O,σ*,λ*,b*)∝L(O |Kbg ,σ*,λ*,b*) × p(Kbg ,σ*,λ*,b*) .    (8) 353 

 354 

Fixing the statistical parameters ignores their uncertainty but still accounts for the presence of 355 

model error, bias, and correlation. These quantities are estimated from the data-model misfit 356 

instead of assumed from expert prior judgment. The best estimate for σ*, λ*, β* is obtained by 357 

numerically maximizing the posterior probability (Eq. 6) using a global optimization method 358 

[Storn and Price, 1997] to account for potential multimodality. Posterior maximization is 359 

analogous to maximum likelihood estimation [Lehmann and Casella, 2003], except that the 360 

likelihood is modified by prior constraints on the parameters. The statistical parameters are 361 

separately optimized for each tracer, allowing the estimated residual structure to vary between 362 

tracers. For every tracer, the parameters are also re-optimized for each member of the ensemble. 363 

In other words, the statistical parameters are allowed to depend on Kbg. The logic behind this 364 

assumption is that the model error depends on the model parameters, since poorly fitting models 365 

should have larger model error and bias. We linearly interpolate the posterior probability onto a 366 

regular grid of Kbg and normalize the integral to unity to arrive at a proper probability density 367 

function. 368 

 369 

We choose a uniform prior for the model parameter Kbg. The correlation length prior is 370 

p(λ)=Lognormal(5.5,0.52). That is, ln(λ) is normally distributed with a mean 5.5 and standard 371 
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deviation 0.5, which puts most of its probability mass between 0 and 600 meters and practically 372 

excludes larger correlation lengths. Large correlation lengths imply strong communication 373 

between the surface and the deep ocean, which is contrary to the layered nature and highly 374 

stratified vertical structure of the ocean.  We use a joint prior for the residual variance and bias, 375 

€ 

p(b /σ) = N(0,0.52) . This prior is selected so the model bias for the best Kbg value is assumed to 376 

be likely smaller than the residual error (i.e., 

€ 

b /σ  is near zero).  This gives low prior weight to 377 

models with large biases, where “large” is quantified relative to the size of the bias-corrected 378 

error, 

€ 

σ . Exploratory analysis indicates that an improper, unbounded uniform prior for the range 379 

or bias parameters can lead to ill-conditioned covariance matrices and non-robust results for the 380 

Kbg posterior distribution. 381 

 382 

3. Results 383 

3.1. Global Metrics 384 

Observed atmospheric CO2 concentrations and global mean surface air temperatures are 385 

simulated roughly equally well in all model versions, irrespective of the value of Kbg (Figure 1). 386 

This is also true for the ocean heat content changes, which are very similar in all simulations 387 

(Figure 2). As already concluded in Tomassini et al. [2007], these globally aggregated 388 

observations provide relatively poor constraints on Kbg. The model suggests, however, that this 389 

situation might change in the future, because the simulations for different Kbg values diverge 390 

notably during the 21st century. For example, at year 2100 differences in CO2 concentrations are 391 

about 70 ppmv (Figure 1). This suggests also that variations in diapycnal diffusivity alone can 392 

account for about 25% of the range in the C4MIP models. At year 2300 differences in CO2 393 

concentrations are more than 200 ppmv. Differences in projected global average surface air 394 

temperatures are 0.8°C in model year 2100 and 1°C in year 2300.  395 

 396 

A 1°C variance with respect to a 7°C global warming might not seem significant compared to the 397 

much larger variance in the C4MIP or IPCC AR4 model projections. However, it is important to 398 

remember that the multi-model spread is caused by numerous differences in model structures and 399 

parameter values, whereas here we have only varied a single parameter. 400 

 401 
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3.2. Influence of Diapycnal Mixing on Climate-Carbon Cycle Projections 402 

Larger diapycnal mixing leads to faster oceanic uptake of heat and CO2 in the model. Both 403 

effects tend to delay and reduce atmospheric warming. Faster CO2 uptake leads to lower 404 

atmospheric CO2 concentrations and thus reduced radiative forcing, whereas faster heat uptake 405 

leads to slower warming of surface waters and therefore delayed warming of surface air 406 

temperatures. We separate these two effects by comparing a simulation with weak mixing (Kbg = 407 

0.1) forced with interactive CO2 to one forced with a prescribed CO2 evolution (and thus 408 

radiative forcing) taken from a run with vigorous mixing (Kbg = 0.5). The difference in surface 409 

air temperature evolution between these two simulations is due only to the effect of slower ocean 410 

heat uptake. The effect of different ocean carbon uptakes is quantified by comparing the 411 

simulation with prescribed CO2 to the fully coupled run with Kbg = 0.1 (Figure 3). The global 412 

surface air temperature increase in the run with prescribed CO2 evolution is about half way 413 

between the experiments with high and low Kbg. About 55% (0.5 K) of the reduced warming of 414 

air temperatures in the high versus the low Kbg simulation is explained by differences in ocean 415 

heat uptake alone, and 45% is caused by faster CO2 uptake. This demonstrates that both effects, 416 

slower heat uptake and slower carbon uptake, provide similar contributions to the reduced 417 

warming in the high mixing model projections. 418 

 419 

We analyze the sensitivity of land (ΔCL) and ocean (ΔCO) carbon uptake until year 2100 with 420 

respect to changes in atmospheric CO2 (β L= ΔCu
L/ΔCu

A; βO = ΔCu
O/ΔCu

A) and climate (γL = 421 

(ΔCc
L-βLΔCc

A)/ΔTc; γO = (ΔCc
O-βOΔCc

A)/ΔTc) following Friedlingstein et al. [2006], where c and 422 

u superscripts denote the coupled and uncoupled (constant climate) runs respectively, ΔT is the 423 

global mean surface air temperature change and ΔCA is the atmospheric CO2 anomaly. As 424 

expected the land sensitivities (βL(Kbg = 0.1) = βL(Kbg = 0.5) = 1.4 GtC/ppm; γL(Kbg = 0.1) = -425 

114 GtC/K; γL(Kbg = 0.5) = -116 GtC/K) are very similar between the different Kbg simulations. 426 

(The C4MIP range for βL is 0.2 to 2.8 GtC/ppm and for γL it is -20 to -177  GtC/K.)  427 

 428 

However, ocean carbon uptake due to changes in atmospheric CO2 alone is 30% smaller in the 429 

low mixing model (βO(Kbg = 0.1) = 1 CtC/ppm) compared to the high mixing model (βO(Kbg = 430 

0.5) = 1.4 CtC/ppm). This suggests that differences in ocean diapycnal mixing alone can explain 431 
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half the range of βO in the C4MIP models (0.8-1.6 GtC/ppm) and re-emphasizes the important 432 

role of diapycnal mixing on anthropogenic carbon uptake by the ocean. There are, of course, 433 

other processes that additionally determine ocean carbon uptake (under fixed climate), such as 434 

the strength of the overturning circulation and convection, mixed layer depths, and air-sea gas 435 

exchange (driven by factors such as sea ice and wind velocities). 436 

 437 

Ocean carbon uptake decreases in the model simulations as climate warms due to increasing 438 

stratification of the upper ocean. A greater weakening of the ocean carbon sink corresponds to 439 

more negative values of γO. In the high mixing models this decrease is larger (γO(Kbg = 0.5) = -45 440 

GtC/K) than in the low mixing models (γO(Kbg = 0.1) = -31 GtC/K). The C4MIP models range 441 

from -14 to -67 GtC/K (though it is worth noting that the γO value of -67 GtC/K is the result of a 442 

box model; the next largest C4MIP model value of γO is -46 GtC/K). At year 2100 the ocean 443 

takes up 4.8 GtC/yr in the low mixing model versus 6.2 GtC/yr in the high mixing model. Most 444 

(8 out of 11) C4MIP models lay within that range of ocean carbon uptake.  445 

 446 

The strength of positive climate-carbon cycle feedbacks can be quantified by the feedback gain 447 

(g = 1-ΔCu
A/ΔCc

A = -α(γL+γO)/(1+βL+βO), where α = ΔTc/ΔCc
A is the transient climate 448 

sensitivity) [Friedlingstein et al., 2006]. The effects of higher βO and larger (negative) γO almost 449 

completely compensate each other, but due to the larger transient climate sensitivity (α (Kbg = 450 

0.1) = 0.0060K/ppm versus α (Kbg = 0.5) = 0.0055K/ppm) there is a modest (10%) increase in 451 

gain in the low mixing model (g(Kbg = 0.1) = 0.2) compared to the high mixing model (g(Kbg = 452 

0.5) = 0.18). The range of g in the C4MIP models is 0.04-0.31, which includes differences in 453 

both terrestrial and oceanic carbon cycle contributions to the total climate-carbon cycle feedback, 454 

in addition to different values of transient climate sensitivity.  According to our analysis, while 455 

different Kbg values can explain a substantial portion of the range of ocean carbon uptake 456 

between models, Kbg differences can explain only a relatively small proportion of the inter-model 457 

range in net climate-carbon cycle feedback strength. 458 

 459 

 460 

3.3. Model Assessment Using Spatially Resolved Ocean Tracer Observations 461 
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3.3.1. Model and Observation Error Estimates 462 

Assessing model skill requires an estimate of the discrepancy between observations and model 463 

predictions. The 3D method’s likelihood function, Equation (2), assumes that the standard 464 

deviation of the data-model residuals (

€ 

σ ) is known.  The 1D method estimates this error from 465 

the residuals by an optimization procedure (Sec. 2.4.2).  For the 3D method we choose to 466 

determine the residual error by more informal means.  By definition, the residual error 467 

€ 

σ i = σOi
2 +σMi

2 should be similar to the standard deviation of the residuals, 

€ 

σ i ≈ SD(Oi −Mi) . 468 

For the 3D method we choose the model error σMi such that this is the case for one of the best 469 

fitting models (Kbg = 0.15). (See Table 1 for values.) This model error is then applied to all 470 

ensemble members.  471 

 472 

The model error estimates σMi can also be interpreted as measures of model quality; they can be 473 

used for different models and are suitable for model intercomparisons. For example, for 474 

temperature and salinity, the values in the second row of Table 1 (3D data and σ O  = 0) 475 

correspond to the global RMS error. They can be compared to those reported for the OCMIP 476 

models [Doney et al., 2004, Table 2] and a subset of the Intergovernmental Panel on Climate 477 

Change Fourth Assessment Report (IPCC AR4) models [Schmittner et al., 2005a]. The OCMIP 478 

range for 3D models without internal restoring is 0.84-2.18 K for temperature and 0.15-0.31 for 479 

salinity; for the IPCC AR4 fully coupled ocean atmosphere models it is 0.86-2.97 K for 480 

temperature and 0.20-0.38 for salinity.  481 

 482 

We use the observational errors reviewed in Section 2.3 for the 3D method. For the 1D method 483 

we assume that the observation error is negligible compared with the model error, since the 484 

global averaging leads to very small observational errors (decreasing with ~ Neff
-1/2, where Neff is 485 

the effective number of observations). This is consistent with the 1D data-model residuals, which 486 

show a smoothly varying structure more indicative of systematic model error than random 487 

observation noise. 488 

 489 

With these error estimates, we evaluate the skill of each of the eight models in the ensemble 490 

using three metrics. We use the root mean squared (RMS) error introduced in Section 2.4.1, as 491 
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well as the bias-corrected RMS error.  We also compute the correlation between the observations 492 

and each model.  A higher correlation indicates greater similarity between the model and the 493 

observations.  We conduct sensitivity studies to explore how model skill varies with Kv as 494 

determined by each of the three skill measures. 495 

 496 

In the following discussion we distinguish between tracers which are influenced by physical 497 

processes only such as T, S, Δ14C, and CFC11, and those tracers strongly affected by biological 498 

processes such as PO4, AOU, P*, DIC, and ALK, since the latter also depend on the choice of 499 

uncertain biological model parameters. Biological effects on the radiocarbon distribution in the 500 

ocean are about 2 orders of magnitude smaller than the physical effects of decay and air-sea gas 501 

exchange. 502 

 503 

The RMS and bias-corrected RMS errors, E and E’, are plotted in Figure 4 together with the 504 

correlation coefficients 

€ 

ri = MiOi / var(Mi) ⋅ var(Oi) , with the variance

€ 

var(x) = x 2 − x
2
, using 505 

the full 3-dimensional data. The different tracers show different sensitivities to Kbg depending on 506 

the global metric considered. When measured by the RMS error E, the model skill for the Δ14C, 507 

AOU, P* and DIC tracers show the largest sensitivity to changes in Kv. Much of this sensitivity, 508 

however, is due to the model bias, as revealed by the difference between E and the bias corrected 509 

error E’. For S, ALK and PO4 the bias is zero (E=E’) because neither of these tracers exchanges 510 

with other climate system components in the model and hence their ocean inventories are fixed. 511 

When measured by the correlation coefficient, the model skill for the AOU and S tracers are most 512 

sensitive to variations in Kbg. 513 

 514 

Most tracers are in better agreement with the observations for small values of Kbg, both for E and 515 

r as metrics. Correlation coefficients between model output and observations peak between 0.05 516 

and 0.15 for all tracers except DIC and T, which are rather insensitive. AOU, DIC, Δ14C and P* 517 

show very large biases for large values of Kbg. The deep ocean is much too young (Δ14C too 518 

high), too vigorously ventilated (AOU too low), too poor in inorganic carbon and too high in 519 

preformed nutrients. Even if the bias is removed, the bias-corrected RMS error E’ in AOU is still 520 

much larger for the high Kbg models. CFC11 and S are both moderately sensitive and show better 521 

agreement with the observations for low Kv, irrespective of the metric considered. PO4 and ALK 522 
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are also moderately sensitive and show minima in RMS errors and maxima in correlation around 523 

Kbg = 0.15. 524 

 525 

3.4. Probabilities From the 3D Method 526 

PDFs from the 3D method suggest that Δ14C is the most sensitive of the physical variables to 527 

changes in Kv, followed by CFC11, T and S (Figure 5). Δ14C, S, and CFC11 show the maximum 528 

probability for small values of Kbg. For Δ14C the probability for small Kbg is about three times as 529 

high as that for high Kbg. T shows a broad maximum for 0.2 ≤ Kbg ≤ 0.4 and smallest probabilities 530 

for very high and very low values of Kbg. The biological tracers (lower panel in Fig. 5) are all 531 

sensitive to variations in Kbg, in particular AOU, DIC, and P* which are 5-10 times more likely 532 

for low then high Kbg. ALK and PO4 show maxima for Kbg around 0.15-0.2.  533 

 534 

3.5. Probabilities From the 1D Method 535 

Figure 6 shows PDFs for the same variables but using the 1D method. The most obvious 536 

difference is that the 1D PDFs are much sharper than those obtained with the 3D method. This 537 

might be counterintuitive, since information was lost by aggregating the data from 3D to 1D (we 538 

discuss this effect further below). The 1D method yields maxima for all tracers for Kbg ≤ 0.2. 539 

Probabilities for Kbg > 0.4 are very small for all tracers. Thus the two statistical methods agree 540 

that high Kbg models are less consistent with the observations than low Kbg models. Both 541 

methods also exhibit similar shapes for most tracers. E.g. Δ14C, S, AOU, DIC and P* all have 542 

maxima for Kbg < 0.2, CFC11, ALK and PO4 show maxima for 0.1 ≤ Kbg ≤ 0.2, and T shows a 543 

broad maximum for 0.2 ≤ Kbg ≤ 0.3. 544 

 545 

3.6. Sensitivity Tests 546 

We conduct four simple sensitivity analyses of the 3D method to gain some insights into the 547 

factors that influence the differences in the posterior PDFs between the 3D and 1D methods 548 

(Figure 7). First, we test the assumption of neglecting the error of the observations by setting 549 

σO=0 and re-estimating the total error σ (Table 1). Comparing the resulting PDFs (blue lines) 550 

with the original PDFs (black lines) shows that this effect is negligible for most tracers. Only 551 

CFC11, Δ14C, and DIC show small differences.  552 

 553 
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Second, we calculated the PDFs for 1D (horizontally averaged) data but using the 3D method as 554 

described in section 2.4.1  (red solid lines in Fig. 7). The re-estimated errors (Table 1) are much 555 

smaller than in the 3D case for all tracers, indicating that the model has considerably more skill 556 

in reproducing the horizontally averaged observations than the full 3D distributions. Intuitively it 557 

makes sense that due to the limited resolution a model’s skill improves with increasing spatial 558 

scale. Comparison of the solid black and solid red lines in Figure 7 shows that smaller σ  results 559 

in sharper PDFs, which for most tracers are now similar to the PDFs from the 1D method (Figure 560 

6). This suggests that the main reason for the sharper PDFs in the 1D method (Figure 6) 561 

compared with the 3D method (Figure 5) is the smaller estimated σ .  562 

 563 

Third, we evaluate the effects of correcting for spatial autocorrelation. Following Ricciuto et al. 564 

[2008] we remove the lag-1 autocorrelation (a) from the 1D residuals, R, according to: 565 

 566 

 

€ 

Ei
2 = Ri(zk ) − aRi(zk−1)( )2 .      (9) 567 

 568 

As expected from earlier studies [Ricciuto et al., 2008; Zellner and Tiao, 1964] this approach to 569 

account for the autocorrelation (green lines in Fig. 7) leads to broader PDFs (compared to the red 570 

solid lines). Neglecting spatial autocorrelation typically results in overconfident parameter 571 

estimates. The fact that the PDFs are quite different emphasizes the importance of properly 572 

considering spatial autocorrelation.  573 

 574 

Fourth, the PDFs are re-calculated for the 1D data (without subtracting autocorrelation) but using 575 

the error estimate from the 3D method with σO=0 (red dashed lines in Fig. 7). Thus the 576 

difference between the red solid lines and the red dashed lines in Fig. 7 isolates the effect of 577 

different estimated σ. The difference between the red dashed lines and the blue lines isolates the 578 

effect of the reduced information content in the 1D versus the 3D residuals. For most tracers the 579 

PDFs are broader than those in the high σ cases (red solid lines) and more similar to the 3D case 580 

(blue lines). This indicates that the most important reason for the difference between the 1D and 581 

3D methods (and the explanation for the sharper PDFs in the 1D method) is the differently 582 

estimated σ. It also suggests that spatial aggregation, despite a loss of information, can help to 583 

improve the model skill, and as a consequence lead to sharper PDFs. For PO4, CFC11, and ALK 584 
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the red dashed lines deviate substantially from the blue solid lines. This indicates an important 585 

loss of information due to the averaging. These tracers might not be suitable for the 1D method. 586 

 587 

3.7. Probabilities for Multiple Tracers 588 

 589 

Each of the tracers examined above contains different information and leads to a different PDF 590 

for Kbg. Our goal, however, is to produce a single PDF combining the information from all 591 

tracers as outlined in sub-section 2.4.1.  592 

 593 

The distribution of each tracer is influenced not only by diapycnal mixing and the large-scale 594 

ocean circulation, but also by other processes. Some tracers, such as T, S, CFC11, Δ14C, and 595 

DIC, are also influenced by air-sea exchange. Thus, the model errors, and hence the PDF, for T 596 

e.g., might be influenced by model biases in ocean-atmosphere heat fluxes, which are controlled 597 

by radiative fluxes as well as sensible and latent heat fluxes. The PDF for S, on the other hand, is 598 

influenced by surface ocean water fluxes, which are determined by evaporation, precipitation and 599 

river runoff, and thus by the atmospheric hydrological cycle. Because different physical 600 

processes control heat and water fluxes (except for evaporation which influences both) it is 601 

unlikely that model errors in heat fluxes are strongly correlated with errors in water fluxes. 602 

Similarly, the air-sea fluxes of carbon, radiocarbon and CFCs are presumably rather independent 603 

from heat and water fluxes. Thus, considering multiple tracers can possibly average out model 604 

errors in individual air-sea fluxes. If the errors in the tracer residuals are independent between 605 

tracers, a combined likelihood for all tracers can be calculated by multiplying the likelihoods of 606 

the individual tracers as described at the end of section 2.4.1. 607 

 608 

On the other hand, if tracers are not independent, multiplication of the likelihoods would lead to 609 

overconfident and possibly biased PDFs. Sinking of particulate organic matter (the soft-tissue 610 

biological pump), for instance, influences PO4, AOU, and DIC and thus errors in those tracers 611 

cannot be expected to be independent. An objective way to determine independence between 612 

different tracers is to examine correlations between the errors of the residuals. As shown in Table 613 

2, the different tracers are generally not independent. PO4, AOU, and DIC are clearly related for 614 
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the reasons mentioned above, but other tracer residuals (such as T and S) are also correlated, for 615 

less obvious reasons. 616 

 617 

At this point no method that we are aware of has accounted for the cross-tracer correlation. It is 618 

highly desirable to develop such a method in the future. For the time being we calculate PDFs for 619 

different combinations of uncorrelated tracers (Figure 8). All combined PDFs show low 620 

probability for models with high mixing rates (Kbg > 0.3). The different tracer combinations do 621 

not agree well for the probability of low mixing models. Some show a distinct maximum around 622 

0.1-0.2 and considerably lower probabilities for lower Kbg, whereas others show high 623 

probabilities for the lowest diffusivities. We conclude that the observations put a firm upper limit 624 

on the diffusivities, whereas no unequivocal lower limit can be determined based on the 625 

information we have presented here. 626 

 627 

4. Discussion 628 

One issue that has not been addressed here is parameter interactions. Generally model tracer 629 

distributions are influenced by more than one parameter, each of which is uncertain. Thus, the 630 

results obtained by varying one parameter depend on the values of many other parameters. This 631 

is also true in our case, and hence the probabilities for different Kbg presented here are tentative 632 

and should be regarded as a test of the methodology rather than a definitive result. 633 

 634 

Parameter interactions might be most obvious for tracers affected by biological processes such as 635 

PO4, AOU, P*, DIC and ALK, which are sensitive to ill-constrained biological model parameters. 636 

Surface nutrient concentrations and deep ocean AOU, P* and DIC, for instance, all depend 637 

strongly on the maximum growth rate of phytoplankton (γ) which determines the efficiency of 638 

the biological pump. The vertical alkalinity gradient is controlled by the fixed ratio of calcium 639 

carbonate versus particulate organic carbon production (RCaCO3/POC). These biological model 640 

parameters were tuned for a model version with Kbg = 0.15 (γ = 0.13 d-1, RCaCO3/POC = 0.03). Thus 641 

larger errors for those tracers in models with different Kbg can be expected because the biological 642 

parameters are unadjusted. Interestingly, though, 3 out of 5 biological tracers prefer Kbg=0.05. 643 

Models with Kbg > 0.15 therefore overestimate surface nutrient concentrations because of more 644 

intense advective and diffusive transport of nutrient rich deep waters to the surface. Similarly, 645 
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models with Kbg > 0.15 underestimate the efficiency of the biological pump and hence the deep 646 

ocean AOU and DIC, and overestimate P*. Thus γ should be increased together with Kbg. Faster 647 

rates of nutrient input into the euphotic zone, in the strong mixing models, also lead to increased 648 

primary and export production [Schmittner et al., 2005b] and higher production of CaCO3, 649 

resulting in overestimated vertical alkalinity gradients. Thus, RCaCO3/POC should be decreased as 650 

Kbg is increased.  651 

 652 

Due to computational constraints we are currently not able to retune the biological parameters for 653 

each model version with different Kbg. A simple optimization of biological parameters for the 654 

model version with Kbg = 0.5 (γ = 0.2 d-1, RCaCO3/POC =0.02) results in a decrease of the errors 655 

with respect to the untuned values shown in Figure 3, but the errors are still significantly larger 656 

than those of the low Kbg models. Thus, the true likelihoods for the biological tracers would 657 

presumably increase for model versions with high Kbg. It is highly desirable to include these 658 

known cross-parameter dependencies in a larger model ensemble in the future. Of course, tracer 659 

distributions not affected by biological parameters, such as Δ14C (radiocarbon in our model is not 660 

influenced by biological parameters) and CFCs, do not suffer from this complication. Therefore 661 

our conclusion that models with Kbg > 0.3 cm2/s are increasingly inconsistent with observations 662 

holds true based on these tracers alone.  663 

  664 

An intriguing result is that horizontally averaged data (1D method) lead to sharper PDFs than the 665 

full 3D data distribution. We have shown that this is likely due to the improved skill of the model 666 

in simulating horizontally averaged observations (smaller σ). This seems to be an advantage of 667 

the 1D method. However, horizontal averaging has the obvious disadvantage that major model 668 

problems in the horizontal tracer distribution are undetectable. Consider, for example, a model 669 

with deep water formation in the North Pacific instead of the North Atlantic. Such a model might 670 

still reproduce the horizontally averaged tracer distributions reasonably well, despite the fact that 671 

it is obviously wrong. Nevertheless, our results suggest that an optimal degree of spatial 672 

aggregation might exist, at which high model skill and the resulting sharp PDFs could be 673 

combined with 3D spatial information.   674 

 675 
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Griffies [2000] showed that z-level models, such as the one used here, can exhibit spurious 676 

diapycnal mixing due to numerical errors. For a model with the same numerical scheme as that 677 

used here (the second order accurate, flux corrected transport scheme, FCT) and a resolution of 678 

2.4°×2.4° they found large spurious mixing in the order of 0.3 cm2/s, whereas for a model with 679 

1.2°×1.2° the spurious mixing was negligible due to the improved resolution of the western 680 

boundary currents. Our zonal grid resolution (which is more important than the meridional 681 

resolution for simulating western boundary currents) of 1.8° is in between those reported by 682 

Griffies [2000]. Thus, we cannot exclude the possibility that our model exhibits spurious mixing, 683 

particularly for the low Kbg cases. However, we can exclude the possibility that the model is 684 

dominated by numerical diffusion, because in this case changing the explicit diffusivity would 685 

not alter the solution. By contrast, in our experiments, the circulation is significantly different 686 

between all runs, including those with low diffusivity. The maximum overturning at 25°N in the 687 

Atlantic in the unperturbed pre-industrial model spinup, for example, is 10.8 Sv, for Kbg =0.01, 688 

12.2 Sv in the Kbg =0.05 case, and 13.8 Sv for Kbg =0.1.  689 

 690 

An outstanding question remains as to how to interpret the range spanned by the C4MIP model 691 

results. This question can be addressed only by a systematic and probabilistic comparison with 692 

observations that sample the relevant parametric and structural uncertainties. Our study 693 

represents a step towards this goal, though here we have sampled only a small fraction of the full 694 

range of parametric uncertainty.  We have shown that low values of Kv are most consistent with 695 

ocean tracer observations, and that most of the C4MIP models fall within the range of ocean 696 

carbon uptake simulated by varying Kbg values in this study. If the values for Kv were known for 697 

the different C4MIP models, it would be possible to reject projections from models with high Kv 698 

values, or to judge them as less reliable than those from models with low Kv.  However, we are 699 

not aware of a published documentation of the values of Kv used by the C4MIP models (effective 700 

diapycnal diffusivity can also contain a difficult-to-evaluate numerical component). There is an 701 

additional complication arising from different structural types of ocean models represented in 702 

C4MIP (box models, versus 2D models, versus GCMs). In practice, therefore, it remains difficult 703 

to assign the likelihoods we have derived here directly to the C4MIP model projections. 704 

However, we think that the methodology developed here can be used for multi-model 705 

assessments in the future, given that spatially resolved tracer model data output is provided. 706 
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 707 

5. Conclusions  708 

We have shown that uncertainties in the value of diapycnal mixing in the pelagic ocean 709 

contribute to the spread in future model projections of CO2 and climate in response to 710 

anthropogenic carbon emissions. Models with low mixing lead to slower uptake of carbon and 711 

heat by the ocean, therefore contributing to higher atmospheric CO2 and warmer air 712 

temperatures. These results suggest that models with large ocean vertical mixing (high Kv) 713 

systematically underestimate future warming and CO2 concentrations, and that the range in 714 

vertical mixing between models is a contributing factor to the large ranges in transient climate 715 

sensitivity and climate-carbon cycle feedbacks that have been diagnosed in earlier model 716 

intercomparisons. 717 

 718 

Globally averaged metrics such as historic changes in globally averaged surface air temperature 719 

or ocean heat content do not provide strong constraints on the vertical diffusivity [Tomassini et 720 

al., 2007]. We show that spatially resolved physical, geochemical and biogeochemical tracer 721 

observations in the ocean can be used to reduce the uncertainty of this parameter (and, by 722 

extension, that of future climate projections). These observations provide a firm upper limit on 723 

the value of Kbg, whereas the lower limit is less well constrained. Our best estimate for the 724 

background diapycnal diffusivity in the pelagic ocean is 0.05-0.2 cm2/s, in agreement with 725 

independent estimates based on dye dispersion experiments and microstructure turbulence 726 

measurements [Ledwell et al., 1993; Toole et al., 1994].  727 

 728 

We have developed a Bayesian model-data fusion method that can be used to quantify and 729 

reduce the uncertainty in future climate-carbon cycle projections. Remaining issues left for 730 

future work include (i) cross-tracer correlations, (ii) parameter interactions, and (iii) the optimal 731 

degree of spatial aggregation. Resolution of the second issue is simply one of computational 732 

resources, while the first needs further development and refinement of the existing statistical 733 

methodology and theory. To resolve the third issue, the optimal degree of aggregation can 734 

presumably be determined in a sensitivity study with successively larger spatial scales of 735 

averaging. None of those issues seem insurmountable. The prospect of robust likelihood-based 736 

model assessment, using multiple observations considering spatial and temporal autocorrelation 737 
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as well as cross-tracer correlations has the potential to lead towards truly probabilistic climate-738 

carbon cycle projections. 739 

 740 
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Figure captions 903 

 904 

Figure 1. Hindcasts and projections of atmospheric CO2 concentration (top) and near surface air 905 

temperature (SAT) anomalies from the 1960-1990 levels (bottom) for model versions with 906 

different values of Kbg. The emission scenario (SRES A2 until year 2100 and linear decrease 907 

until year 2300 afterwards) is shown as the heavy dotted line in the top panel with the scale in 908 

the bottom right corner ranging from 0-30 Gt C / yr. For reference: current (2007) levels are 909 

about 8.5 Gt C / yr [Canadell et al., 2008]. The insets in the upper left region of each panel show 910 

a zoom into the hindcast period (1800-2007) including CO2 observations from Mauna Loa 911 

[Keeling and Whorf, 2005] and ice cores [Neftel et al., 1994] (circles) and temperature 912 

observations from the HadCRUT3 [Brohan et al., 2006] dataset (black noisy line).  913 

 914 

Figure 2. Upper ocean (0-700 m) heat content changes (from year 1961) as simulated by the 915 

different model versions (lines) compared to observations (grey shading) from Domingues et al. 916 

[2008]. The dark grey shading denotes nine year running mean values for comparison with 917 

decadal averages plotted for the model simulations. The light gray shading shows three-year 918 

averages. 919 

 920 

Figure 3. Effects of reduced ocean heat and carbon uptake on projected warming resulting from 921 

smaller vertical mixing. The solid line shows the  global mean surface air temperature anomaly 922 

for a run with low vertical mixing (Kbg=0.1) minus that from a run with high vertical mixing 923 

(Kbg=0.5), including both effects, reduced heat and reduced carbon uptake. The dashed line 924 

shows the effect of reduced heat uptake alone from a sensitivity experiment with Kbg=0.1 in 925 

which atmospheric CO2 evolution is prescribed to be identical to that from the Kbg=0.5 926 

simulation. The effect of reduced carbon uptake shows as the difference between the dashed and 927 

solid lines. 928 

 929 

Figure 4. Normalized RMS errors E (left), E’ (center) and correlation coefficients r (right) for 930 

3D distributions of different physical (top) and biogeochemical (bottom) tracers as a function of 931 

the diapycnal background diffusivity Kbg.  932 

 933 



 

 33 

Figure 5. Posterior PDFs using the 3D method (eq. 3) for different physical (top) and 934 

biogeochemical (bottom) tracers as a function of the diapycnal background diffusivity Kbg.  935 

 936 

Figure 6. Posterior PDFs using the 1D method (eq. 7) for different physical (top) and 937 

biogeochemical (bottom) tracers as a function of the diapycnal background diffusivity Kbg. 938 

 939 

Figure 7. Sensitivity tests. Posterior PDFs as a function of the diapycnal background diffusivity 940 

Kbg for different tracers using the 3D method, but different assumptions in the statistical analysis 941 

as described in the text. Black lines show the full 3D method and are identical to the PDFs 942 

shown in Figure 5. Blue lines neglect the error in the observations (σO=0). Note that for many 943 

tracers the black lines are indistinguishable from and covered by the blue lines. Solid red lines 944 

use the 3D method as described in subsection 2.4.1 but use horizontally averaged 1D data. Note 945 

that the error estimate (σ) is strongly reduced (see also Table 1) and that the PDFs are much 946 

sharper compared to the un-averaged 3D data (black lines). Red dashed lines also use the 3D 947 

method and horizontally averaged 1D data but instead of estimating the error (as done for the 948 

solid red lines) the error estimate from the 3D data (black lines) is used. Thus the difference 949 

between the red solid and red dashed lines are only due to different σ. Green lines compared to 950 

the red solid lines illustrate the broadening effect on the PDFs from removing the spatial 951 

autocorrelation using eq. (9).  952 

 953 

Figure 8. Posterior PDFs as a function of the diapycnal background diffusivity Kbg for different 954 

combinations of uncorrelated (see Table 2) tracer distributions using the 3D method. Compared 955 

with the PDFs of the individual tracers as shown in Figure 5, the combined PDFs are much 956 

sharper illustrating the power of using multiple tracers to constrain model parameters. 957 
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959 
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 959 

 960 

Table 1. Estimated model error σ M for different assumptions and tracers as calculated from the 961 

Kbg=0.15 case.  962 

  T S Δ14C CFC11 PO4 AOU DIC ALK P* 

  (K)  (permil) (pM) (µM) (mM) (µM) (µM) (µM) 

σ O≠0 0.90  0.18 0.0 0.24 0.20  25 19  13  0.16 3D 

σ O=0 0.92 0.19 20 0.35 0.20 25 25 15 0.16 

1D σ O=0 0.24 0.079 5.9 0.053 0.064 3.7 9.0 6.6 0.062 

 963 

 964 

Table 2. Cross-tracer error correlation for the 3D method in the model with Kbg=0.15 cm2/s. 965 

Absolute values larger than 0.3 are shown in bold. 966 

 T S Δ14C CFC11 PO4 AOU DIC ALK 

T         

S 0.48        

Δ14C 0.26 0.03       

CFC11 0.01 -0.04 0.39      

PO4 -0.42 -0.22 -0.41 -0.23     

AOU -0.09 0.12 -0.36 -0.40 0.65    

DIC -0.20 0.31 0.33 -0.13 0.52 0.76   

ALK 0.04 0.54 0.23 -0.07 0.12 0.42 0.72  

P* -0.44 -0.42 -0.19 0.08 0.69 -0.08 -0.05 -0.23 
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